Review

Epidemiology of meticillin-resistant *Staphylococcus aureus* (MRSA) in Latin America

Manuel Guzmán-Blanco\textsuperscript{a,*,1}, Carlos Mejía\textsuperscript{b,1}, Raul Isturiza\textsuperscript{a}, Carlos Alvarez\textsuperscript{c,1}, Luis Bavestrello\textsuperscript{d,1}, Eduardo Gotuzzo\textsuperscript{e,1}, Jaime Labarca\textsuperscript{f,1}, Carlos M. Luna\textsuperscript{g,1}, Eduardo Rodríguez-Noriega\textsuperscript{b,1}, Mauro J.C. Sallesi\textsuperscript{1}, Jeannete Zurita\textsuperscript{j,1}, Carlos Sea\textsuperscript{e,1}

\textsuperscript{a} Centro Médico de Caracas, Caracas, Venezuela
\textsuperscript{b} Hospital Roosevelt, Guatemala City, Guatemala
\textsuperscript{c} Hospital San Ignacio and Pontificia Universidad Javeriana, Bogotá, Colombia
\textsuperscript{d} Clínica Reina Victoria, Viña Del Mar, Chile
\textsuperscript{e} Universidad Peruana Cayetano Heredia, Lima, Peru
\textsuperscript{f} Pontificia Universidad Católica de Chile, Santiago, Chile
\textsuperscript{g} Universidad de Buenos Aires, Buenos Aires, Argentina
\textsuperscript{h} Hospital Civil de Guadalajara, 'Fray Antonio Alcalde', Instituto de Patología Infecciosa y Experimental, Centro Universitario Ciencias de la Salud, Universidad de Guadalajara, Jalisco, Mexico
\textsuperscript{i} Hospital Irmãndade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
\textsuperscript{j} Hospital Vozandes, Quito, Ecuador

\textsuperscript{*} Corresponding author. Present address: Hospital Privado, Centro Médico de Caracas (Anexo A), Sótano 3, Conj. 37, Caracas, Venezuela. Tel.: +58 212 555 9492; fax: +58 212 552 2864.

E-mail address: mibeli@cantv.net (M. Guzmán-Blanco).

\textsuperscript{1} The Latin American Working Group on Gram-Positive Resistance.

Abstract

Meticillin-resistant *Staphylococcus aureus* (MRSA) has become a serious threat to public health worldwide. Ongoing surveillance is essential to support infection control committees and clinicians in the prevention and treatment of infection. However, in Latin America, resources for monitoring the changing epidemiology of MRSA remain limited. In this article, we review the current situation of MRSA in Latin America in order to highlight the need for a more harmonised effort to improve its management. Literature in the PubMed and SciELO databases as well as the website of the Pan American Health Organization were searched for articles and information about the epidemiology of MRSA in Latin America. MRSA is already the leading cause of nosocomial infection in the Latin American region, and the number of reports of community-acquired MRSA infections is also rising. However, the extent of the problem is not fully understood, especially since data tend to come from large hospitals whereas much of the population is served by small community healthcare centres that do not have extensive facilities for performing microbiological surveillance. In conclusion, wider-reaching and co-ordinated programmes to provide regular MRSA surveillance reports are required across the Latin American region.

© 2009 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

1. Introduction

*Staphylococcus aureus* is a major global pathogen that can cause severe infections both in healthy and immunocompromised people. Oxacillin and meticillin were first used in the clinic in the early 1960s, but after only a few years strains of *S. aureus* appeared that were resistant to these agents, collectively termed meticillin-resistant *S. aureus* (MRSA). These strains, carrying the *mecA* gene that confers resistance to meticillin and oxacillin, first spread within the hospital environment and, in more recent times, have also been found circulating in the community [1]. MRSA has been widely disseminated between countries and across continents; >50% of *S. aureus* isolates now show resistance to meticillin in areas of the USA and some European countries [2–4]. The rise in cases of MRSA infection is a significant concern for public health since they are associated with increased morbidity and mortality and use of healthcare resources compared with infections caused by non-resistant strains [5,6].

Knowledge of the local epidemiology of MRSA underpins effective prevention and treatment strategies, including the rational use of antibiotics. In this article, we review the current state of surveillance in the Latin American region where MRSA is highly prevalent but resources are limited. We also discuss the epidemiology and clinical implications both of nosocomial and community-acquired MRSA infections. By summarising currently available data from
2. MRSA surveillance in Latin America

2.1. Surveillance programmes and methodology

Until the year 2000, epidemiological surveillance in Latin America was conducted in only a few countries, including Venezuela and Argentina. Since then, with the support of the Pan American Health Organization (PAHO) and the United States Agency for International Development (USAID), a network for surveillance of bacterial resistance has been organised, which includes the majority of Latin American countries: the Monitoring/Surveillance Network for Resistance to Antibiotics. Criteria for admission of surveillance centres to the network include concepts of standardisation, quality control, supervision visits and regular data reporting. Results are published each year on the PAHO website (http://www.paho.org) and in a limited edition of hard copies. Data are collected during the daily work of selected laboratories in the region, with strong support from national and regional reference laboratories.

Special efforts to gather surveillance data from the region have also been made by pharmaceutical companies, with initiatives including the Tigecycline Evaluation and Surveillance Trial (TEST) from Wyeth, SENTRY from Bristol-Myers Squibb, and RESISTNET and the Zyvox Annual Appraisal of Potency and Spectrum (ZAAPS) from Pfizer. Whilst these studies are valuable, limitations include the fixed number of strains examined per centre and the small numbers of participating centres and countries. As a result, the data do not always accurately reflect the situation in the region.

The methodology used for definition of a given strain as MRSA is different in each country. Some countries work with the Bauer–Kirby method for screening using oxacillin or cefoxitin disks, and others use automated methods such as VITEK 1 or 2 (bioMérieux) and/or MicroScan (Dade Behring). Confirmation tests such as the meticillin screen plate test are not widely used. The high cost of Etest strips does not permit their routine use in laboratories in the region, and rapid methods of mecA gene detection are not available in the majority of laboratories. Molecular analysis of MRSA strains is restricted to some centres in Brazil, Argentina, Chile, Mexico and Colombia. In cases of nosocomial outbreaks, the identity of MRSA strains is usually assumed from the phenotypic pattern of antibiotic resistance.

2.2. Nosocomial MRSA in Latin America

MRSA strains are currently classified as nosocomial or hospital-associated (HA-MRSA) and community-associated (CA-MRSA) [7–14]. HA-MRSA strains tend to be multidrug-resistant (MDR) and to colonise and infect patients during hospitalisation or in long-term healthcare facilities, after surgery or following contact with a person who has an MRSA infection or is a carrier of MRSA. Periodic outbreaks of infection were first reported in hospitals where high levels of oxacillin or meticillin were used and in intensive care environments. However, from the 1980s onwards, HA-MRSA has been a significant regional health threat, causing infections initially in large hospitals and later in smaller community hospitals.

Nosocomial MDR MRSA is a growing problem in Latin America (Fig. 1) [15–23]. Information gathered by the PAHO-sponsored programme on nosocomial infections [15] demonstrated that for the year 2004 MRSA prevalence was as follows: Argentina, 42% (n = 5851 isolates); Bolivia, 36% (n = 1167); Chile, 80% (n = 246); Colombia, 47% (n = 4214); Costa Rica, 58% (n = 674); Cuba, 6% (n = 80); Ecuador, 25% (n = 1363); Guatemala, 64% (n = 1483); Honduras, 12% (n = 393); Mexico, 52% (n = 497); Nicaragua, 20% (n = 296); Paraguay, 44% (n = 980); Peru, 80% (n = 1407); Uruguay, 59% (n = 1431); and Venezuela, 25% (n = 2114).

Similarly, data submitted to the Pan-American Association of Infectious Diseases for the year 2006 [16] showed the following rates of HA-MRSA: Argentina, 51%; Bolivia, 55%; Brazil, 54%; Chile, 29%; Ecuador, 25%; Mexico, 32%; Panama, 28%; Paraguay, 30%; Uruguay, 24%; and Venezuela, 27% (number of isolates not stated).

Further data from SENTRY reveal an increase in the proportion of MRSA in Latin American medical centres from 33.8% in 1997 to 40.2% in 2006 [24]. In this programme 41% of MRSA strains were collected from Brazil. Although there was increased resistance to most of the other antibiotics analysed, there was a decrease in the frequency of strains with a minimum inhibitory concentration (MIC) to vancomycin ≥ 1 μg/mL.

Other reports from hospitals in Latin America demonstrate that MRSA poses a common problem. In Intensive Care Units in Rio Grande do Sul, Brazil, in 2003, S. aureus was the most prevalent organism in nosocomial infections and 64% of isolates were MRSA [18]. Between 1997 and 1999, 93.3% of S. aureus isolates in blood-stream infections in a newborn unit in Rio de Janeiro, Brazil, were meticillin-resistant [17]. Of note, Melo et al. [25] found that in Uberlândia, Brazil, 9 of 41 patients receiving treatment with vancomycin were infected with MRSA isolates that met criteria for heteroresistance to vancomycin, and one of the isolates had a MIC of 0.8 μg/mL. In a large teaching hospital in Lima, Peru, 85% of 73 hospital-acquired S. aureus infections were reported to be due to MRSA in 2002 [19]. More recent data from Mexico coming from the TEST study show a prevalence of MRSA of 48% [20]. Reports from the Colombian network of surveillance of resistance have revealed that MRSA prevalence was 38% in 2001, 46% in 2002, 45% in both 2003 and 2004, 38% in 2005 and 34% in 2006 [21]. Data from Valdivia, Chile, showed that in 2006, 33% of S. aureus isolates from hospitalised patients were MRSA [22]. In a Venezuelan surveillance programme, 36.4% of 730 isolates of S. aureus from hospitalised patients were meticillin-resistant in 2005 [23].

2.3. MRSA in the community in Latin America

MRSA infections that are acquired in the community are classified into two categories, with and without healthcare-associated risk factors, the latter category representing the true CA-MRSA infections [10]. Recognised healthcare-associated risk factors are admission to hospital in the previous year, residence in a long-term care facility, dialysis, surgery, permanent indwelling catheters or the use of medical devices inserted through the skin. The distinction between community-acquired MRSA infections with and without healthcare-associated risk factors and HA-MRSA infections is relevant, as these infections are caused by strains that show different epidemiological, clinical, microbiological, genetic and therapeutic behaviours. Community-acquired MRSA in patients with healthcare-associated risk factors tends to be genetically closer to HA-MRSA strains than to CA-MRSA strains [26]. Current evidence suggests that CA-MRSA strains that are acquired in the absence of healthcare-associated risk factors evolved from meticillin-susceptible S. aureus in the community that acquired specific genotypic features, including the staphylococcal cassette chromosome mec (SCCmeC) IV element, a mobile and easily transferred element [27].

Although this classification of HA-MRSA and CA-MRSA is commonly used, there is confusion over the terminology, especially between terms such as acquired and associated. Experts propose to use the term acquired to refer to the location of exposure and the term associated to refer to specific S. aureus strains [28]. Additionally, the utility of searching for healthcare-associated risk factors to distinguish between MDR strains (HA-MRSA) and CA-MRSA strains...
Panton–Valentine leukocidin (PVL), enterotoxin and in the treatment of skin infections [32]. In this outbreak, trimethoprim/sulfamethoxazole was very active but severe forms of pneumonia were reported, including 4 deaths. SSTIs accounted for >65% of the cases, and 12 deaths had occurred. SSTIs accounted for >65% of the cases, community in Montevideo, Uruguay, beginning in January 2002 [31]. A further report followed of a large outbreak of CA-MRSA infection (SSTI or septic arthritis in 2003 harboured SCCmec type IV, Panton–Valentine leukocidin (PVL), enterotoxin and β-haemolysin genes. A further report followed of a large outbreak of CA-MRSA infection that affected inmates in jails and people from the community in Montevideo, Uruguay, beginning in January 2002 [31]. At the end of the outbreak more than 1000 patients had been affected and 12 deaths had occurred. SSTIs accounted for >65% of the cases, but severe forms of pneumonia were reported, including 4 deaths. In this outbreak, trimethoprim/sulfamethoxazole was very active in the treatment of skin infections [32].

Since those first reports, MRSA has been identified as the cause of community-acquired infections in several more countries across South America. In Lima, Peru, 27% resistance to meticillin was reported in isolates collected from 30 community-acquired infections in 2002 [19]. Two cases of SSTI caused by CA-MRSA strains were reported from Bogotá, Colombia, in 2006 [33], and a report from the Colombian network of resistance surveillance showed an increase in CA-MRSA from 1% of S. aureus isolates in 2001 to 5.4% in 2006 [21]. The PAHO programme has also included surveillance of community-acquired MRSA infections since 2005, and in Venezuela 12.4% of 845 S. aureus isolates from the community were resistant to oxacillin [23]. However, no clinical information is available for these cases. A few isolated cases of CA-MRSA infection have been reported in Chile, but some of these were in people returning from cities in Uruguay or Brazil with a high incidence of MRSA [34,35].

Surveillance programmes are only recently beginning to record CA-MRSA, and the true incidence of MRSA in the community is still largely unknown in the region.

Although surveillance systems in Latin America are improving, many limitations remain. Data are unavailable from several countries, and even in countries participating in regional surveillance programmes the data recorded may not reflect the general situation and may not be widely accessible. Much of the population of Latin America is served by small community hospital centres where resources and facilities for microbiology are very limited, whereas data tend to come only from a few large hospitals and reference laboratories. In some countries there are marked differences in the MRSA frequencies detected by different studies. This may reflect real changes in the incidence of MRSA over time (for example, the impact of improved infection control practice or importation of an epidemic strain), differences between the populations studied (populations that are geographically separated or with different risk factors for MRSA), or changes in standards of microbiology and the availability of technologies.

If surveillance data are to be useful in practice, they must be accurate. Reference laboratories are vital in this regard for ensuring quality control in microbiology, but microbiologists in all centres require sufficient training and resources to identify MRSA and to perform susceptibility tests. In particular, Etests for vancomycin susceptibility testing are not widely available in Latin America. Reduced susceptibility to vancomycin has been reported in HA-MRSA strains in some studies, which may be associated with a greater rate of clinical failure. However, the situation in Latin America is not fully known and this represents a challenge to decision-making in clinical practice. An apparent decrease in strains with a vancomycin MIC $\geq 1 \mu g/mL$ [24] suggests a shift in clonal dissemination and further data are required to follow this trend, which has important implications for treatment. The role of vancomycin as the first-choice agent for the treatment of severe infection caused by MRSA is being questioned, especially since there are now new options for treatment such as the oxazolidinones, glycyclines and lipopeptides. Guidelines or recommendations for the appropriate diagnosis of MRSA, vancomycin-intermediate S. aureus (VISA) and S. aureus with reduced susceptibility to vancomycin can support the correct use of newer treatment options such as linezolid, daptomycin or tigecycline based on local resistance data.

Early empirical therapy may reduce the risk of mortality in severe MRSA infections [36] but therapy should be based on local
Clinicians and microbiologists need to be aware of the high prevalence of MRSA in Latin America and must be alert to the evolving epidemiology in their local region. Infection control committees play a key role in advising clinicians in this respect. Ongoing surveillance of the MRSA situation in each healthcare centre and in the community in Latin America, in order to provide up-to-date information, is essential to the success of infection control programmes and treatment protocols. More rigorous monitoring and reporting of epidemiological data is required, including use of the Internet to make real-time reports of outbreaks and special situations available. This will enable infection control committees to tackle the spread of MRSA with a co-ordinated effort in order to implement appropriate antibiotic policies, screening and decolonisation protocols, and other preventive strategies.

Funding: Pfizer Inc. (New York, NY) provided support for meetings of the Latin American Working Group on Gram-Positive Resistance. Members of the Working Group received honoraria for attendance at the meetings. Pfizer Inc. had no involvement in the study design, in the collection, analysis and interpretation of the data, or in the decision to submit the article for publication. The support provided by Choice Pharma (Hitchin, UK), funded by Pfizer Inc., consisted solely of manuscript formatting and writing assistance.

Competing interests: MG-B: Advisory Board member for Pfizer, Merck and BD, consultant for Pfizer, Wyeth and Jansen, and received research funding from Wyeth and Merck; CM: Advisory Board member for Pfizer and Abbott, consultant for Pfizer, and received funding from Tibotec for HIV research, from Aveixa for studies in HIV treatment and from Merck for participation in the SMART study; RI: Advisory Board member for Wyeth, speaker for Wyeth and Sanofi-Pasteur, and moderator for Astra-Zeneca symposium; CA: Advisory Board member for Pfizer, and consultant for Pfizer, Janssen-Cilag, GlaxoSmithKline, Baxter, Merck Sharp & Dohme and Bristol-Myers Squibb; LB: Advisory Board member and consultant for Pfizer; EG: Advisory Board member and consultant for Pfizer; JL: Advisory Board member for Pfizer, consultant for Pfizer, Merck Sharp & Dohme and Wyeth, and investigator for linezolid studies funded by Pfizer; CML: Advisory Board member for Pfizer, Bayer and Wyeth, consultant for Pfizer, and speaker for Astra-Zeneca; ERN: Advisory Board member for Pfizer, consultant for Pfizer, Wyeth, Johnson & Johnson and Novartis, and received research grants from Pfizer, Wyeth, Johnson & Johnson, Schering-Plough and Cerexa; MJCS: Advisory Board member for Pfizer and Wyeth, consultant or speaker for Pfizer, Wyeth, Merck and United Medicinals; JZ: Advisory Board member and consultant for Pfizer, and received research grant from Wyeth; CS: Advisory Board member and consultant for Pfizer, and received research funding from Theravance, Cerexa, Schering-Plough and Aveixa.

Ethical approval: Not required.

References


